Honors Chemistry: Dr. Palermo

Bases be like:

 PHENOPHIHMITIDON OURSEIVES AND turnarink

-BEMOSZUHREBASDB

Bronsted-Lowry when you accept a proton

When you start the acid base unit

Basic Humor

Unit 12: Acids and Bases Class Packet

1. Use Table K and Table L to help you identify the rules for determining whether a substance is an acid, a base, or a salt based on the formula. Underline all the acids, circle bases, and box in salts. Leave the covalent substances alone.

HF	NaCl	$\mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Ca}(\mathrm{OH})_{2}$	CH_{4}
$\mathrm{NH}_{4} \mathrm{Br}$	HCl	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	HNO_{3}	$\mathrm{CH}_{3} \mathrm{COOH}$	NaOH
$\mathrm{H}_{3} \mathrm{PO}_{4}$	LiOH	$\mathrm{CH}_{2}(\mathrm{OH})_{2}$	$\mathrm{NH}_{4} \mathrm{OH}$	$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

- All acids have the \qquad ion in common.
- All bases have the \qquad ion in common.
- All salts have formulas: \qquad
- All other compounds have formulas: \qquad
- Organic acids have the general formula: \qquad
- Draw ethanoic acid and circle which H^{+}ion is lost:

2. Which formula represents a hydronium ion?
(1) $\mathrm{H}_{3} \mathrm{O}^{+}$
(2) OH^{-}
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) HCO_{3}^{-}
3. Which compound is an Arrhenius acid?
(1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(2) NaOH
(3) KCl
(4) NH_{3}
4. Which substance is an Arrhenius acid?
(1) $\mathrm{Ba}(\mathrm{OH})_{2}$
(2) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(3) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(4) NaCl
5. Which compound releases hydroxide ions in an aqueous solution?
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) HCl
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(4) KOH
6. The Arrhenius theory explains the behavior of
(1) acids and bases
(2) alcohols and amines
(3) isomers and isotopes
(4) metals and nonmetals
7. Which two compounds are electrolytes?
(1) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ and HCl
(3) NaOH and HCl
(4) NaOH and $\mathrm{CH}_{3} \mathrm{CHOH}$
8. Given the equation:

$$
\mathrm{HCl}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{X}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Which ion is represented by X ?
(1) hydroxide
(3) hypochlorite
(2) hydronium
(4) perchlorate
9. When one compound dissolves in water, the only positive ion produced in the solution is $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$. This compound is classified as
(1) a salt
(2) a hydrocarbon
(3) an Arrhenius acid
(4) an Arrhenius base
10. An aqueous solution of lithium hydroxide contains hydroxide ions as the only negative ion in solution. Lithium hydroxide is classified as an
(1) aldehyde
(3) Arrhenius acid
(2) alcohol
(4) Arrhenius base
11. Which compound is an Arrhenius acid?
(1) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(3) NaOH
(2) KCl
(4) NH_{3}
12. An Arrhenius base yields which ion as the only negative ion in an aqueous solution?
(1) hydride ion
(3) hydronium ion
(2) hydrogen ion
(4) hydroxide ion
13. Which two formulas represent Arrhenius acids?
(1) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
(3) KHCO_{3} and KHSO_{4}
(4) NaSCN and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$
14. According to the Arrhenius theory, an acid is a substance that
(1) changes litmus from red to blue
(2) changes phenolphthalein to pink
(3) produces hydronium ions as the only positive ions in an aqueous solution
(4) produces hydroxide ions as the only negative ions in an aqueous solution
15. Which formula represents a hydronium ion?
(1) $\mathrm{H}_{3} \mathrm{O}^{+}$
(2) OH^{-}
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) HCO_{3}^{-}
16. Which substance is an Arrhenius acid?
(1) $\mathrm{Mg}(\mathrm{OH})_{2}$
(2) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(3) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(4) LiCl
17. Which compound releases hydroxide ions in an aqueous solution?
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) HF
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(4) LiOH
18. Which substance is an Arrhenius base?
(1) $\mathrm{CH}_{3} \mathrm{OH}$
(2) LiOH
(3) $\mathrm{CH}_{3} \mathrm{Cl}$
(4) LiCl
19. The only positive ion found in $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ is the
(1) ammonium ion
(3) hydronium ion
(2) hydroxide ion
(4) sulfate ion
20. Which substance, when dissolved in water, forms a solution that conducts an electric current?
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(3) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
(2) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(4) $\mathrm{CH}_{3} \mathrm{COOH}$
21. Complete the table below using your knowledge of acids, bases, and salts

Diagram:	Narrative
Narrative:	

Unit 12: Acids and Bases Class Packet

Strong or Weak, Concentrated or Dilute?

Directions: For each case, decide if the picture shows a weak or strong, and concentrated or dilute solution.
Acid:

H+ion:
O
Anion A-:

Case 3
5. What does concentrated mean in terms of amount of particles? \qquad
6. What does dilute mean in terms of amount of particles? \qquad
7. What does strong mean in terms of ions? \qquad
8. What does weak mean in terms of ions? \qquad

Neutralization Reactions: If equal mole amounts of acid and base are added together, the resulting solution is NEUTRAL!

Example:

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Predict the products of and balance the following reactions:
$\mathrm{HF}(\mathrm{aq})+\ldots \mathrm{LiOH}(\mathrm{aq}) \rightarrow$
(aq) +
$\mathrm{HOH}(\mathrm{I})$
$\mathrm{HNO}_{3}(\mathrm{aq})+$
$\mathrm{KOH}(\mathrm{aq}) \rightarrow$
(aq) +
$\mathrm{HOH}(\mathrm{I})$
$\mathrm{HCl}(\mathrm{aq})+\ldots \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$
(aq) +
$\mathrm{HOH}(\mathrm{I})$
$\mathrm{HClO}_{3}(\mathrm{aq})+$
$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$
(aq) +
$\mathrm{HOH}(\mathrm{I})$
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+$
$\mathrm{NaOH}(\mathrm{aq}) \rightarrow$
(aq) +
$\mathrm{HOH}(\mathrm{I})$
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$
$\mathrm{LiOH}(\mathrm{aq}) \rightarrow$
(aq) +
$\mathrm{HOH}(\mathrm{I})$
$\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+$
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$
(aq) +
$\mathrm{HOH}(\mathrm{I})$
$\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})+$
$\mathrm{KOH}(\mathrm{aq}) \rightarrow$
(aq) +
$\mathrm{HOH}(\mathrm{I})$
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+$
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow$
(s) +
$\mathrm{HOH}(\mathrm{I})$

Neutralization reactions are a type of DOUBLE REPLACEMENT reaction

Unit 12: Acids and Bases Class Packet

Reactions Involving Acids \& Bases

Reactions of Acids with Metals (use Table J!)

Any metal ABOVE H_{2} in the table will react with acids to produce $\mathrm{H}_{2}(\mathrm{~g})$ and a salt.
Any metal below H_{2} in the table will NOT react with an acid (only 3 metals do NOT react with acids: $\mathrm{Cu}, \mathrm{Au}, \mathrm{Ag}$) When metals react with acids, this is an example of a SINGLE REPLACEMENT reaction.

Predict the products of the following reactions:

$\mathrm{Ca}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow$ \qquad $+$ \qquad

1. According to Reference Table J, which of these metals will react most readily with 1.0 M HCl to produce $\mathrm{H}_{2}(\mathrm{~g})$?
(1) Ca
(2) K
(3) Mg
(4) Zn
2. Under standard conditions, which metal will react with 0.1 M HCl to liberate hydrogen gas?
(1) Ag
(2) Au
(3) Cu
(4) Mg
3. Because tap water is slightly acidic, water pipes made of iron corrode over time, as shown by the balanced ionic equation below. Explain, in terms of chemical reactivity, why copper pipes are less likely to corrode than iron pipes.

$$
2 \mathrm{Fe}(\mathrm{~s})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

4. Many ancient cultural statues and buildings were made out of marble. Marble is a type of rock which contains the metal calcium in it. Explain, using Table J, why marble statues are damaged by acid rain.
5. During a laboratory activity, a student reacted a piece of zinc with $0.1 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$.
(a) Complete the equation below by writing the formula of the missing products.

$$
\mathrm{Zn}+\mathrm{HCl} \rightarrow ـ_{+}^{+}
$$

(b) Identify one metal that does not react spontaneously with $\mathrm{HCl}(\mathrm{aq})$. \qquad

Reactions Regents Ouestions

1. What are the products of a reaction between $\mathrm{KOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$?
(1) H_{2} and KClO
(3) $\mathrm{H}_{2} \mathrm{O}$ and KCl
(2) KH and HClO
(4) KOH and HCl
2. Which word equation represents a neutralization reaction?
(1) base + acid \rightarrow salt + water
(2) base + salt \rightarrow water + acid
(3) salt + acid \rightarrow base + water
(4) salt + water \rightarrow acid + base
3. Which compound could serve as a reactant in a neutralization reaction?
(1) NaCl
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(2) KOH
(4) $\mathrm{CH}_{3} \mathrm{CHO}$
4. Which substance is always a product when an Arrhenius acid in an aqueous solution reacts with an Arrhenius base in an aqueous solution?
(1) HBr
(3) KBr
(2) $\mathrm{H}_{2} \mathrm{O}$
(4) KOH
5. Which reactants form the salt $\mathrm{CaSO}_{4}(\mathrm{~s})$ in a neutralization reaction?
(1) $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}$ (s)
(2) $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$
(4) $\mathrm{SO}_{2}(\mathrm{~g})$ and CaO (s)
6. Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, can be used to neutralize barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$. What is the formula for the salt produced by this neutralization?
(1) BaS
(3) BaSO_{3}
(2) BaSO_{2}
(4) BaSO_{4}
7. Which chemical equation represents the reaction of an Arrhenius acid and an Arrhenius base?
(1) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(2) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(3) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(4) $\mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$

When an acid dissolved it dissociates or ionizes (breaking up into two ions). The ions are separated due to the polarity of water, as shown below. Draw what happens to the other acid, base, and salt in water.
HCI(g) + $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HCl}(\mathrm{aq})$

Explain why they are known as electrolytes when in solution but not when they are in solid or gas phases.

Unit 12: Acids and Bases Class Packet

Bronsted Lowry Theory (Alternate Theory)

Acids are defined as proton $\left(\mathrm{H}^{+}\right)$donators. They donate protons to the base. Bases are defined as proton acceptors. They accept protons from the acid.

$$
\mathrm{HBr}+\mathrm{NH}_{3} \longleftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{Br}^{-}
$$

According to Bronsted-Lowry theory, acid-base reactions involve a transfer of a proton. Above, the acid on the left, \qquad , transfers (donates) a proton
 $\left(\mathrm{H}^{+}\right)$and becomes a base on the right, \qquad . The donating acid and the base it becomes are called conjugate acid - base pairs. The base on the left, \qquad , accepts a proton $\left(\mathrm{H}^{+}\right)$and becomes an acid on the right, \qquad . This is also a conjugate pair.

$$
\begin{align*}
& \mathrm{HF}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}_{(\mathrm{aq})}^{-} \tag{1}\\
& \mathrm{HI}_{(\mathrm{aq})}+\mathrm{NH}_{3(\text { (aq })} \longleftrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{I}_{(\mathrm{aq})}^{-} \tag{2}\\
& \begin{array}{l}
\mathrm{NH}_{4}^{+}{ }_{(\text {aq })}+\mathrm{OH}_{(\text {aq }}^{-} \\
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{H}_{2} \mathrm{SO}_{(\text {aq })} \\
\longleftrightarrow \mathrm{NH}_{3(\text { aq })}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
\mathrm{HSO}_{4}^{-}{ }_{(\text {aq })}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}
\end{array} \tag{3}
\end{align*}
$$

1. In the reactions above, label the acids in the reactants and explain what they all have in common.
2. In the reactions above, label the bases in the reactants and explain what they all have in common.
3. If you reverse the equations, label the new acids and bases.
4. Now you can see, that each acid on the left hand side produces a corresponding base on the right hand side. The base is called the conjugate base. Similarly, a base on the right hand side will produce a conjugate acid. These pairs are known as conjugate acid-base pairs. List the conjugate acid-base pairs for equations (1) and (2).
5. Write the acid-base reaction for NH_{3} reacting with HCl and label the acid, the base, the conjugate acid and the conjugate base.
6. Draw Lewis electron dot diagrams with charges and partial charges ($\delta+$) of each of the compounds above to show the transfer of the H^{+}ion in this reaction.
\qquad 6. One acid-base theory defines a base as an
(1) H^{+}donor
(2) H donor
(3) H^{+}acceptor
(4) H acceptor
7. One alternate acid-base theory states that an acid is a(n)
(1) H^{+}donor
(2) OH^{-}donor
(3) H^{+}acceptor
(4) OH^{-}acceptor
8. According to one acid-base theory, a water molecule acts as an acid when the water molecule
(1) accepts an $\mathrm{H}+$
(2) accepts an OH-
(3) donates an $\mathrm{H}+$
(4) donates an OH_{-}
9. Given the equation representing a reaction at equilibrium:

$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longleftrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

The H^{+}acceptor for the forward reaction is
(1) $\mathrm{H}_{2} \mathrm{O}$ (I)
(2) $\mathrm{NH}_{4}{ }^{+}$(aq)
(3) $\mathrm{NH}_{3}(\mathrm{~g})$
(4) $\mathrm{OH}^{-}(\mathrm{aq})$
10. Which formula represents a hydronium ion?
(1) $\mathrm{H}_{3} \mathrm{O}^{+}$
(2) OH^{-}
(3) $\mathrm{NH}_{4}{ }^{+}$
(4) HCO_{3}^{-}
11. Given the balanced equation representing a reaction:
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longleftrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
According to one acid-base theory, the $\mathrm{NH}_{3}(\mathrm{~g})$ molecules act as
(1) an acid because they accept H^{+}ions
(2) an acid because they donate H^{+}ions
(3) a base because they accept H^{+}ions
(4) a base because they donate H^{+}ions
12. Which statement describes an alternate theory of acids and bases?
(1) Acids and bases are both H^{+}acceptors.
(2) Acids and bases are both H^{+}donors.
(3) Acids are H^{+}acceptors, and bases are H^{+}donors.
(4) Acids are H^{+}donors, and bases are H^{+}acceptors.

13 Which substance, when dissolved in water, forms a solution that conducts an electric current?
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(2) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
(3) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(4) $\mathrm{CH}_{3} \mathrm{COOH}$

Unit 12: Acids and Bases Class Packet

The pH Scale

The pH scale is a measure of the H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$concentration in a solution. " pH " stands for "potential to ATTRACT Hydrogen ions"
> Acids have a LOW pH (a LOW potential to attract H^{+}ions (release/DONATE H^{+})
> Bases have a HIGH pH (a HIGH potential to attract H^{+}ions (bases are H^{+}acceptors) The pH scale is logarithmic: a change of one pH unit will change the concentration of H^{+}by a factor of 10.

1. What is the relationship between pH value and hydrogen ion concentration?
2. Which substance is 10000 times more acidic than seawater?
3. Complete the table below using the grid above:

	Hydronium Ion Concentration (M)	$\mathbf{p H}$	Acid or Base?
Stomach fluids			
Lemon Juice			
Tomato Juice			
Milk			
Blood			
Seawater			
Milk of Magnesia			
Aqueous Ammonia			
Bleach			

4. Find the pH of the following solutions and determine if its acidic or basic:

Unit 12: Acids and Bases Class Packet

Acid Concentration	pH	Acid or Base? (or neutral ©)
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-2}$		
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7}$		
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-10}$		
$\left[\mathrm{H}^{+}\right]=1 \times 10^{-11}$		
$\left[\mathrm{H}^{+}\right]=1 \times 10^{-5}$		
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0010$		
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0000010$		
$\left[\mathrm{H}^{+}\right]=0.0000000010$		

Recall the following:

- increasing or decreasing the pH by 1 changes the $\left[\mathrm{H}^{+}\right]$by a factor of 10^{1} (10 times, ten-fold)
- increasing or decreasing the $\mathbf{p H}$ by 2 changes the $\left[\mathrm{H}^{+}\right]$by a factor of $10^{\mathbf{2}}$ (100 times, hundred-fold)
- increasing or decreasing the pH by 3 changes the $\left[\mathrm{H}^{+}\right]$by a factor of $10^{\mathbf{3}}(1000$, thousand-fold)

7. Describe what happens to the concentration of hydrogen ions in a solution if the pH is changed from 7 to 5 .
8. Describe what is happening to the concentration of hydrogen ions in a solution if the pH is changed from 5 to 8 .
9. Complete the table below:

pH Change	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increase or decrease?	$\left[\mathrm{OH}^{-}\right]$increase or decrease?	Does the solution become more acidic or basic?	By a factor of...
6 to 8				
8 to 5				
3 to 7				
11 to 9				
14 to 13				
4 to 8				

Unit 12: Acids and Bases Class Packet

8. Which of these pH numbers indicates the highest level of acidity?
(1) 5
(2) 10
(3) 8
(4) 12
9. Which change in pH represents a hundredfold increase in the concentration of hydronium ions?
(1) pH 1 to pH 2
(3) pH 2 to pH 1
(2) pH 1 to pH 3
(4) pH 3 to pH 1
10. The pH of a solution changes from 4 to 3 when the hydrogen ion concentration in the solution is
(1) decreased by a factor of 100
(2) decreased by a factor of 10
(3) increased by a factor of 100
(4) increased by a factor of 10
11. Solution A has a pH of three and solution Z has a pH of six How many times greater is the hydronium ion concentration in solution A than the hydronium ion concentration in solution Z ?
(1) 100
(2) 3
(3) 2
(4) 1000
12. What is the pH of a solution that has a hydronium ion concentration 100 times greater than a solution with a pH of 4 ?
(1) 5
(2) 3
(3) 2
(4) 6

Honors pH Activity

Directions: No work needed but report answers with proper significant figures and units.

Solution	$\mathbf{p H}$	pOH	$[\mathrm{H}+]$	$[\mathrm{OH}-]$	$\left[\mathrm{H}^{+}\right] \mathbf{x}[\mathrm{OH}]$	$\mathrm{pH}+\mathrm{pOH}$	$\mathrm{A} / \mathrm{B} / \mathrm{N} ?$

1. Describe the relationship between the strength of acids, H^{+}and OH^{-}concentration, and $\mathrm{pH} / \mathrm{pOH}$.
2. Describe the relationship between the strength of bases, H^{+}and OH^{-}concentration, and $\mathrm{pH} / \mathrm{pOH}$.
3. If the pOH of a solution is 5 find the $\mathrm{pH},\left[\mathrm{H}^{+}\right]$, and $\left[\mathrm{OH}^{-}\right]$. Is it an acid, base, or neutral?
4. If the $\left[\mathrm{H}^{+}\right]$of a solution is 1×10^{-5} find the $\mathrm{pH}, \mathrm{pOH}$, and $[\mathrm{OH}-]$. Is it an acid, base, or neutral?
5. The equation for the auto-ionization of water can be written as: $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \Leftarrow \Rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$ At room temperature, $\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$. Write the expression for the equilibrium constant for this reaction, calculate the concentration of the ions and explain why the pH of water is 7 .
6. Suppose the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$were increased to $1.0 \times 10^{-3} \mathrm{M}$ by the addition of acid. Calculate the $\left[\mathrm{OH}^{-}\right]$in solution.
7. Suppose the $\left[\mathrm{OH}^{-}\right]$were increased to $2.5 \times 10^{-3} \mathrm{M}$ by the addition of base. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
8. Determine the pH of the solutions in Q 2 and Q 3 . Determine the pOH of these solutions.
9. The hydrogen ion concentration of several foods was measured with the following results. Bananas have a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of $2.5 \times 10^{-5} \mathrm{M}$. Pickles have a $\left[\mathrm{OH}^{-}\right]$of $8.3 \times 10^{-11} \mathrm{M}$ and milk has a pH of 6.4 . List the foods in order from most basic to most acidic.
10. The pH of a solution is 3.8. Calculate the $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right]$and pOH .
11. The pH of the blood plasma is regulated between a very narrow range (7.35-7.45). One of the equilibrium systems that helps to manage this is: $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \Leftrightarrow 2 \mathrm{H}_{2} \mathrm{CO}_{3} \Leftrightarrow \Rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-}$ A person whose blood pH gets too low tends to hyperventilate, blowing off CO_{2} gas in the process. Explain how the loss of CO_{2} can raise the blood pH .
12. The pH of cider vinegar is approximately 5 , whereas the pH of a freshly opened can of Coca-Cola is approximately 2.5. How many times greater is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the Coke than in the vinegar?
13. After a while, an open can of a carbonated soft drink goes flat. How would this change the pH of the beverage if at all? Explain.

How to use Table M:

> If the pH is below the first number, the solution will be the first color listed
$>$ If the pH is above the second number, the solution will be the second color listed
$>$ If the pH is between the numbers, the solution will be a mix of the two colors

Ex: If you add bromthymol blue...
to a solution with a pH of 8 , it will be blue to a solution with a pH of 6 , it will be green to a solution with a pH of 4 , it will be yellow

1. Which indicator, when added to a solution, changes color from yellow to blue as the pH of the solution is changed from 5.5 to 8.0 ?
(1) bromcresol green
(2) bromthymol blue
(3) litmus
(4) methyl orange
2. Which indicator would best distinguish between a solution with a pH of 3.5 and another with a pH of 5.5?
(1) bromthymol blue
(3) litmus
(2) bromcresol green
(4) thymol blue
3. In which solution will bromcresol green appear blue?
(1) 1 M NaCl
(3) $1 \mathrm{M} \mathrm{NH}_{3}$
(2) $1 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$
(4) $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
4. In which solution will thymol blue indicator appear blue?
(1) $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(3) 0.1 M KOH
(2) 0.1 M HCl
(4) $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
5. What is the color of the indicator methyl orange in a solution that has a pH of 2 ?
(1) blue
(3) yellow
(2) orange
(4) red
6. In a solution with a pH of 3 , what color is bromcresol green?
(1) yellow
(3) green
(2) blue
(4) red
7. At what pH will bromothymol blue be yellow and bromocrescol gree be blue?
(1) 10.5
(2) 5.7
(3) 7.0
8. A student used blue litmus paper and phenolphthalein paper as indicators to test the pH of distilled water and five aqueous household solutions. Then the student used a pH meter to measure the pH of the distilled water and each solution. The results of the student's work are recorded in the table below.
a) Identify the liquid tested that has the lowest hydronium ion concentration.
b) Explain, in terms of the pH range for color change on Reference Table M, why litmus is not appropriate to differentiate the acidity levels of tomato juice and vinegar.

Testing Results

Liquid Tested	Color of Blue Litmus Paper	Color of Phenolphthalein Paper	Measured pH Value Using a pH Meter
2% milk	blue	colorless	6.4
distilled water	blue	colorless	7.0
household ammonia	blue	pink	11.5
lemon juice	red	colorless	2.3
tomato juice	red	colorless	4.3
vinegar	red	colorless	3.3

c) Based on the measured pH values, identify the liquid tested that is 10 times more acidic than vinegar.

Unit 12: Acids and Bases Class Packet

Titrations

Titrations are procedures used to determine the concentration (M) of an acid or a base. You combine together an acid and a base knowing the volume of each and the concentration of only one of them.

1. What number would be at the top of the buret?
2. Read the volume of the base in the buret.
3. If the buret holds 50 mL , how much base is actually in the buret?
4. If a student started at 2.0 mL and released base until it was at the level shown, how much bases was added?
5. Why is it not necessary to subtract all your volumes from 50 mL ?

Using the equation on Reference Table T, you can solve for either the molarity/concentration (M) or a volume added (V).

$$
\begin{array}{|c|ll}
\hline M_{A} V_{A}=M_{B} V_{B} & M_{A}=\text { molarity of } \mathrm{H}^{+} & V_{A}=\text { volume of acid } \\
M_{B}=\text { molarity of } \mathrm{OH}^{-} & V_{B}=\text { volume of base }
\end{array}
$$

1. A 25.0 -milliliter sample of $\mathrm{HNO}_{3}(\mathrm{aq})$ is neutralized by 32.1 milliliters of $0.150 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$. What is the concentration of the acid?
2. How many milliliters of 0.200 M NaOH are needed to neutralize $100 . \mathrm{mL}$ of 0.100 M HCl ?
3. In a titration, 20.0 milliliters of $0.15 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ is exactly neutralized by 18.0 milliliters of $\mathrm{KOH}(\mathrm{aq})$.
(a) Complete the equation below for the neutralization reaction by writing the formula of each product.

$$
\mathrm{KOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots+
$$

(b) Compare the number of moles of $\mathrm{H}^{+}(\mathrm{aq})$ ions to the number of moles of $\mathrm{OH}^{-}(\mathrm{aq})$ ions in the titration mixture when the $\mathrm{HCl}(\mathrm{aq})$ is exactly neutralized by the $\mathrm{KOH}(\mathrm{aq})$.
(c) Determine the concentration of the $\mathrm{KOH}(\mathrm{aq})$.
(d) What is the new pH of the solution?
10. In a laboratory activity, 0.500 mole of $\mathrm{NaOH}(s)$ is completely dissolved in distilled water to form 400. milliliters of $\mathrm{NaOH}(\mathrm{aq})$. This solution is then used to titrate a solution of $\mathrm{HNO}_{3}(\mathrm{aq})$.
(a) Identify the negative ion produced when the $\mathrm{NaOH}(\mathrm{s})$ is dissolved in distilled water.
(b) Calculate the molarity of the $\mathrm{NaOH}(\mathrm{aq})$. Your response must include both a correct numerical setup and the calculated result.
(c) If 26.4 milliliters of the NaOH solution is needed to exactly neutralize 44.0 milliliters of the HNO_{3} solution, what is the molarity of the HNO_{3} solution?
(d) Complete the equation below representing this titration reaction by writing the formulas of the products.
$\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow$ \qquad $+$

Unit 12: Acids and Bases Class Packet

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}^{-3} \quad \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{-2}
$$

What happens when an acid has two or more hydrogen atoms? Do they just lose one? Strong acids completely ionize leaving no hydrogen atoms in the anion or conjugate base. This means we need to amend out titration formula for these special acids to include all the acidic ions that come off.

$$
\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}^{-}+\mathrm{Ca}^{+2} \quad \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{2 O H}^{-}+\mathrm{Mg}^{+2}
$$

Similarly, what happens when a base has two or more hydroxide ions? Do they just lose one? Strong bases completely ionize leaving no hydroxide ions in the cation. This means we need to amend out titration formula for these special bases to include all the basic ions that come off.

The $\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$ formula will have coefficients in front of the M corresponding to the number of H^{+}or OH^{-}in the acid and base formula.

Example: If 35.0 mL of $3.00 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ is neutralized by 50.0 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$, what is the molarity of the base?

$$
\begin{array}{lc}
\mathrm{M}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}} \quad \text { becomes } & 3 \mathrm{M}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=2 \mathrm{M}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}} \\
& 3(3)(35)=2(\mathrm{x})(50) \\
& \mathrm{x}=3.15 \mathrm{M}
\end{array}
$$

1. If 65.0 mL of $1.50 \mathrm{M} \mathrm{H} \mathrm{H}_{3} \mathrm{PO}_{4}$ is neutralized by 25.0 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$, what is the molarity of the base?
2. If 15.0 mL of $3.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is neutralized by 25.0 mL of $\mathrm{Mg}(\mathrm{OH})_{2}$, what is the molarity of the base?
3. If 150.0 mL of $4.50 \mathrm{M} \mathrm{HNO}_{3}$ is neutralized by $3.00 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$, what is the volume of the base added?
4. If $25.5 \mathrm{~mL} \mathrm{H}_{3} \mathrm{PO}_{4}$ is neutralized by 50.0 mL of 2.00 M LiOH , what is the molarity of the acid?
5. If 35.0 mL of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is neutralized by 50.0 mL of 1.50 M KOH , what is the molarity of the acid?
6. If 6.00 M HI is neutralized by 50.0 mL of 4.50 M RbOH , what is the volume of the acid added?
7. What are the products of a reaction between $\mathrm{LiOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$?
(1) H_{2} and LiClO
(2) $\mathrm{H}_{2} \mathrm{O}$ and LiCl
(3) LiH and HClO
(4) LiOH and HCl
8. Which word equation represents a neutralization reaction?
(1) salt + acid \rightarrow base + water
(2) base + salt \rightarrow water + acid
(3) base + acid \rightarrow salt + water
(4) salt + water \rightarrow acid + base
9. Which compound could serve as a reactant in a neutralization reaction?
(1) HCl
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(2) HOH
(4) $\mathrm{H}_{2} \mathrm{O}$
10. Which substance is always a product when an Arrhenius acid in an aqueous solution reacts with an Arrhenius base in an aqueous solution?
(1) HF
(3) KBr
(2) $\mathrm{H}_{2} \mathrm{O}$
(4) LiOH
11. Which reactants form the salt $\mathrm{MgSO}_{4}(\mathrm{~s})$ in a neutralization reaction?
(1) $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{~s})$
(2) $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
(3) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})$
(4) $\mathrm{SO}_{2}(\mathrm{~g})$ and MgO (s)
12. Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, can be used to neutralize barium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$. What is the formula for the salt produced by this neutralization?
(1) CaS
(3) CaSO_{3}
(2) CaSO_{2}
(4) CaSO_{4}
13. Which chemical equation represents the reaction of an Arrhenius acid and an Arrhenius base?
(1) $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
(4) $\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{NaOH}$
14. Which volume of $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ exactly neutralizes 15.0 milliliters of $0.20 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$?
(1) 1.5 mL
(3) 3.0 mL
(2) 7.5 mL
(4) $30 . \mathrm{mL}$
15. In which laboratory process could a student use $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ to determine the concentration of an aqueous solution of HBr ?
(1) chromatography
(2) decomposition of the solute
(3) evaporation of the solvent
(4) titration
16. The data collected from a laboratory titration are used to calculate the
(1) rate of a chemical reaction
(2) heat of a chemical reaction
(3) concentration of a solution
(4) boiling point of a solution
17. Which volume of $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ exactly neutralizes 15.0 milliliters of $0.020 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$?
(1) 1.5 mL
(3) 3.0 mL
(2) 7.5 mL
(4) $30 . \mathrm{mL}$
18. What volume of $0.120 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$ is needed to completely neutralize 150.0 milliliters of 0.100 M $\mathrm{NaOH}(\mathrm{aq})$?
(1) 62.5 mL
(3) $180 . \mathrm{mL}$
(2) 125 mL
(4) $360 . \mathrm{mL}$
19. A 25.0 -milliliter sample of $\mathrm{HNO}_{3}(\mathrm{aq})$ is neutralized by 32.1 milliliters of $0.150 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$. What is the molarity of the $\mathrm{HNO}_{3}(\mathrm{aq})$?
20. A 25.0 mL sample of 5.00 M HCl is required to neutralize 34.5 mL of NaOH solution, what is the concentration of the NaOH solution?
21. A total of 50.0 mL of 0.50 M KOH solution completely neutralizes 125 mL of hydrobromic acid solution (HBr). Calculate the concentration of the HBr solution.
22. What volume of $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ exactly neutralizes 15.0 milliliters of $0.20 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$?
23. What volume of 0.05 M HI is required to neutralize 50 ml of 0.01 M NaOH solution?
24. What volume of $0.500 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$ must completely react to neutralize 100.0 milliliters of 0.100 M $\mathrm{KOH}(\mathrm{aq})$?
25. In a titration, 15.65 milliliters of a $\mathrm{KOH}(\mathrm{aq})$ solution exactly neutralized 10.00 milliliters of a $1.22 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ solution.
(a) Write the balanced equation for the titration reaction.
(b) Show a correct numerical setup for calculating the molarity of the $\mathrm{KOH}(\mathrm{aq})$ solution.
26. In performing a titration, a student adds three drops of phenolphthalein to a flask containing 25.00 milliliters of $\mathrm{HCl}(\mathrm{aq})$. Using a buret, the student slowly adds $0.150 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ to the flask until one drop causes the indicator to turn light pink. The student determines that a total volume of 20.20 milliliters of $\mathrm{NaOH}(\mathrm{aq})$ was used in this titration.
(a) The concentration of the $\mathrm{NaOH}(\mathrm{aq})$ used in the titration is expressed to what number of significant figures?
(b) Calculate the molarity of the $\mathrm{HCl}(\mathrm{aq})$ used in this titration. Your response must include both a correct numerical setup and the calculated result.

Unit 12: Acids and Bases Class Packet

Common Sense Chemistry Review
 Pretty basic stuff. $\&$ Acid what you did there

1. Identify the ingredients in the following common household chemicals as acids, bases, salts, or neither:
a. Aspirin $\mathrm{HOOCC}_{6} \mathrm{H}_{4} \mathrm{OOCCH}_{3}$
d. Bleach ClO-
b. Glass cleaner $\mathrm{NH}_{4} \mathrm{OH}$
e. Baking Soda NaHCO_{3}
c. Ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
f. Deodorant $\mathrm{Al}(\mathrm{OH})_{3}$
2. A farmer tests his soil with pH paper and finds the value to be 5.5 , which could explain why his crops are dying.
a. Is the soil acidic, basic, or neutral?
b. Identify a substance that could be added to the soil that would make the soil more suitable for farming (more neutral).
c. The farmer adds lime to the soil on the east side of his farm and re-tests the pH . The pH rises to 8.5, which further weakens his plants. Has the hydronium concentration increased or decreased, and by what factor has it changed?
d. The farmer calls in a specialist to help with his dying plants. First the specialist quick tests the soil with a few indicators. Identify the color changes expected for each indicator on the east and west side of his farm:

East
West
i. Methyl orange
ii. Bromothymol blue

e. The specialist wants to determine the exact concentration of acid or base in the original soil in order to determine how to treat it effectively.
i. What is the technique the specialist may use to determine the molarity of the soil?
ii. The specialist obtains a 150.0 mL sample of soil and neutralizes the soil with 1.0 M $\mathrm{Ca}(\mathrm{OH})_{2}$. The process requires 75.0 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$.

1. How does the specialist know when to end the process when the soil was neutralized?
2. Calculate the concentration of the acid or base present in the original soil.
