- 1. Protons and neutrons in nucleus, electrons outside nucleus
- 2. Equal to atomic number
- 3. Mass atomic number
- 4. Atomic number
- 5. Metal ions-subtract the charge from the electron number; Nonmetal ions add the charge
- 6. Protons and neutrons both have a mass of 1 amu
- 7. Protons + neutrons
- 8. Number of protons
- 9. Number of protons (located on bottom left corner of element symbol)
- 10. Same # of protons different # of neutrons
- 11. Electrons go from excited state (high energy) to ground state (low energy)
- 12. Use electron configuration (remember BOHRings)
- 13. Locate group with same number of valence electrons
- 14. Same group
- 15. Decreases because of increased nuclear pull
- 16. Increases due to increased nuclear pull
- 17. Increases due to increased nuclear pull
- 18. Increase because more electron shells
- 19. Decreased because larger size means less pull on valence electrons
- 20. Decreased because larger size means less pull on valence electrons
- 21. Fluorine
- 22. Helium
- 23. Metals left of staircase; nonmetals right of staircase; metalloids on staircase

Metals: malleable, ductile, lusterous, high mp and bp, good conductors

Nonmetals: brittle, dull, poor conductors, low mp and bp

Metalloids: properties of both

- 24. Nobel gases due to full valence shell
- 25. Elements
- 26. Physical doesn't form new substance chemical does
- 27. Ionic: metal and nonmetal

Covalent: nonmetal and nonmetal Metallic: atoms of same metal

28. Ionic: transfer e-Covalent: share e-

Metallic: sea of mobile e-

29. Ionic: conduct in aq

Covalent: do not conduct*
Metallic: always conduct

- 30. Ionic compounds that contain polyatomic ions
- 31. Absorbed (BARF)
- 32. Most polar: metal and nonmetal Least polar: nonmetal and nonmetal

- 34. Water is polar, methane is nonpolar, ammonia is polar, H₂, HCl is polar, CO₂ is nonpolar
- 35. Yes because its polar (asymmetrical) like dissolves like
- 36. Hydrogen bonding because its most polar
- 37. Total mass of x and y from periodic table
- 38. 4
- 39. 2 mol
- 40. Synthesis, decomposition, single replacement, double replacement
- 41. 8 grams
- 42. Mass, energy, charge
- 43. XY₂
- 44. X₂Y₂
- 45. Hydrogen
- 46. Temperature
- 47. KE stays same; PE increases
- 48. PE stays same; KE increases
- 49. 37,620J
- 50. 226,000J
- 51. 33,400J
- 52. Low because they heat up and cool down quickly (do not require a lot of heat to do so)
- 53. 3 reaction down on table I
- 54. KNO₃
- 55. Solid to gas
- 56. Random with great distances between the particles
- 57. PLIGHT (pressure low, high temp)
- 58. Opposite of PLIGHT
- 59. Look on table A
- 60. $H_2(g)$
- 61. Decrease
- 62. Direct
- 63. Increase
- 64. High temp low pressure
- 65. # of particles
- 66. Heterogeneous mixtures
- 67. Separates by differences in boiling pt
- 68. Polar dissolves in polar and nonpolar dissolves in nonpolar
- 69. Homogeneous (aq)
- 70. 12 kPa

- 71. Propanone
- 72. NaNO₃
- 73. SO₂
- 74. Under the line is unsaturated; on the line is saturated; above line is supersaturated
- 75. 0.010g/10000.010g of solution = 0.999ppm
- 76. Increase
- 77. Decrease
- 78. Increase the following: temp, concentration, surface area, pressure (gases) or add a catalyst to increase the number of effective collisions
- 79. Lower activation energy
- 80. Heat of products heat of reactants
- 81. $3H_2 + N_2 \rightarrow 2NH_3$ because hydrogen is used to make more ammonia (shifts right)
- 82. They are constant
- 83. They are equal
- 84. Side with more moles of gas is affected more which shifts equilibrium away from the stress to the side with less moles of gas
- 85. Contains carbon and hydrogen
- 86. Contains carbon and hydrogen only
- 87. $C_nH_{2n}+2$
- 88. 2
- 89. Alkanes
- 90. Alcohols, organic acids
- 91. Same molecular formula different structural formula
- 92. Addition
- 93. Soap: saponification

Alcohol: fermentation

Plastics: polymerization

Ester: esterification

- 94. Conducts electricity
- 95. H⁺ or H₃O⁺
- 96. OH
- 97. The concentration of $H^{+} = OH^{-}$ HCl + NaOH \rightarrow H₂O + NaCl
- 98. Acids (1-7) bases (7-14)
- 99. Increase by a factor of 100
- 100. Pink
- 101. Titration
- 102. 2 species changing oxidation states (single replacement always redox and double never)
- 103. Oxidation # increases
- 104. Gains electrons
- 105. They are conserved
- 106. Anode (an ox)
- 107. Li (highest on table J)

108.	Through wire from anode to cathode
109.	Allow ions to flow
110.	Electrons flow spontaneously from anode to cathode
111.	Cathode
112.	Voltaic: converts chemical energy to electrical energy
	Electrolytic: converts electrical energy to chemical energy
113.	To force the nonspontaneous reaction
114.	Unstable (radioactive)
115.	Alpha
116.	Gamma
117.	Gamma
118.	Use table N
119.	Use able N
120.	U-238 (longest half life)
121.	I-131 for thyroid; U-238 for rocks; C-14 for organic material; Co-60 for cancel
122.	Natural has 1 reactant and artificial has 2 reactants
123.	Fission starts with large atoms and fusion with small
124.	Fusion needs large amounts of energy
125.	Benefit: detect disease
	Risk: causes cancer