

Chemistry Review Notes Units 1-7

Moles, Stoichiometry, Naming and Formula Writing

Molar Mass

- The mass of 1 mole of a substance (element or compound)
- AKA the gram formula mass (GFM)

Ex. $H_2O = 2(1.0) + 16.0 = 18.0g/mol$

Calculating Moles

Мр

Table T: Moles = given mass (g)

gfm is the mass of the element or formula in grams Ex. the gfm of NaCl = 23 + 35.5 = 58.5 g/mol (always round to nearest tenth)

Mole Problem: What is the mass of 0.500 mol of NaCl?

Types of Reactions

Synthesis:

 $A + B \rightarrow AB$ $BA \rightarrow A + B$

* only one product * only one reactant

Decomposition: Single Replacement:

 $A + BC \rightarrow B + AC$

AB + CD - AD + CB Double Replacement:

Synthesis: Forming 1 product

Ex. 2N₂ + 3H₂ = 2 NH₃

Decomposition: 1 reactant

Ex. 2 NH₃ = 2N₂ + 3H₂

Atomics

Atomic Theory

- 1. Atom is a solid sphere
- 2. Atom consists of a uniform positive charge with electrons embedded in it
- 3. Atom consists of a small positive nucleus and is mostly empty space
- 4. Electrons orbit around the nucleus in energy levels
- 5. There is a high probability of finding electrons in orbitals

Thomson vs Rutherford Thomson discovered electrons Similarities: Both agreed that there were negative electrons and that the atom was neutral Differences: Rutherford said protons (+ charges) were in nucleus and electrons were outside the nucleus

How to determine if it is in an excited state

Mp

- Add up total # of electrons in configuration
- Determine element
- If it matches element configuration on periodic table = GROUND If it doesn't match = EXCITED

Example: Identify the electron configuration as being ground state or excited state: 2-6-1

Mp Lewis dot diagrams: atoms Locate the last number (valence number) in the electron configuration. Each dot represents 1 valence electron (no more than 2 dots per side of symbol)

Periodic Table

Periodic Table Organization

Мр

Mendeleev: organized my mass

Mosley: current table organized by atomic number (number of protons)

	Metals	Metalloids	Nonmetals
Phys. prop.	 malleable ductile shiny excellent conductors (heat, electricity MOBILE e-'s) 	in- between	brittle dull poor conductors (heat, electricity)
	lose e-'sform + ionslow E.N.low I.E.	B, Si, Ge, As, Sb, Te	gain e-'sform - ionshigh E.N.high I.E.

leat

