

Balancing Redox Equations

Practice: Balance the following redox reactions. Remember that you do not include the spectator ions in your half reactions. The first one is done for you.

First assign oxidation states:

Example:

$$0 +1 -1 +2 -1 0$$

Cu + AgNO₃ \rightarrow Cu(NO₃)₂ + Ag

Oxidation:
$$1(Cu^0 \rightarrow Cu^{+2} + 2e^-) = Cu^0 \rightarrow Cu^{+2} + 2e^-$$

Reduction: $2(Ag^{+1} + 1e^- \rightarrow 2Ag^0) = 2Ag^{+1} + 2e^- \rightarrow 2Ag^0$

Then plug coefficients back into original equation to balance the reaction.

Answer:
$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

1. PbO + CO
$$\rightarrow$$
 Pb + CO₂

2.
$$MgCl_2 + Cr \rightarrow Mg + CrCl_3$$

3. Pb + AgNO₂
$$\rightarrow$$
 Pb(NO₂)₂ + Ag

4.
$$CsF + Na \rightarrow NaF + Cs$$

5. NaCl +
$$Br_2 \rightarrow NaBr + Cl_2$$

6.
$$Fe^{+2}$$
 + Cu^+ \rightarrow Fe^{+3} + Cu

7.
$$Cr + CuBr_2 \rightarrow CrBr_3 + Cu$$

8.
$$Zn + CuO \rightarrow ZnO + Cu$$

REGENTS PRACTICE

Given the unbalanced ionic equation:

$$3 \text{Mg} + \underline{\hspace{1cm}} \text{Fe}^{3+} \rightarrow 3 \text{Mg}^{2+} + \underline{\hspace{1cm}} \text{Fe}$$

When this equation is balanced, both Fe3+ and Fe have a coefficient of

- A) 1, because a total of 6 electrons is transferred
- B) 2, because a total of 6 electrons is transferred
- C) 1, because a total of 3 electrons is transferred
- D) 2, because a total of 3 electrons is transferred
- Which expression correctly represents a balanced reduction half-reaction?
 - A) $Na^+ + e^- \rightarrow Na$ B) $Na \rightarrow Na^+ + e^-$

 - C) $Cl_2 + 2e^- \rightarrow Cl^-$ D) $2 Cl^- \rightarrow Cl_2 + 2e^-$
- 3. Which equation shows conservation of charge?

 - A) Fe \rightarrow Fe²⁺ + e⁻ B) Fe + 2e⁻ \rightarrow Fe²⁺

 - C) Fe \rightarrow Fe²⁺ + 2e⁻ D) Fe + 2e⁻ \rightarrow Fe³⁺
- 4. Which half-reaction shows both the conservation of mass and the conservation of charge?
 - A) $Cl_2 + 2e^- \rightarrow 2 Cl$ B) $Cl_2 \rightarrow Cl^- + 2e^-$
- - C) $2 Br^- + 2e^- \rightarrow Br_2$ D) $Br^- \rightarrow Br_2 + 2e^-$
- 5. Given the balanced equation:

$$3 \text{ Fe}^{3+}(aq) + \text{Al}(s) \rightarrow 3 \text{ Fe}^{2+}(aq) + \text{Al}^{3+}(aq)$$

What is the total number of moles of electrons lost by 2 moles of Al(s)?

- A) 1 mole
- B) 6 moles
- C) 3 moles
- D) 9 moles
- Given the reaction:

$$\underline{\hspace{1cm}}\operatorname{Cl}_2(g) + \underline{\hspace{1cm}}\operatorname{Fe}^{2+}(aq) \to \underline{\hspace{1cm}}\operatorname{Fe}^{3+}(aq) + \underline{\hspace{1cm}}\operatorname{Cl}^-(aq)$$

When the equation is correctly balanced using smallest whole numbers, the coefficient of Cl-(aq) will be

- A) 1
- B) 2
- C) 6
- D) 7

ASSESS YOURSELF ON THIS LESSON:

If you missed any regents practice questions you should see me for extra help and/or re-watch the lesson video assignment