Analyzing Physics and Chemistry Education in U.S. Schools with State-Level Data Sets

Korean Association for Science Education Angela M. Kelly, Keith Sheppard, Robert Krakehl, Linda Padwa, Martin Palermo January 28, 2021

Institute for STEM Education STONY BROOK UNIVERSITY

angela.kelly@stonybrook.edu

Project Rationale

- The physical sciences (physics and chemistry) are not taken by all high school students in the U.S.
 - Approximately 39% of high school students take physics (White & Tesfaye, 2014), and 70% of students take chemistry before graduating (NCES, *Science & Engineering* Indicators, 2018).
- U.S. schools have decentralized control, with states making decisions on standards, graduation requirements, and teacher certification.
- States have published data on student performance since the passage of the *No Child Left Behind* law in 2002.
 - These robust data sets provide contextual information on student participation in the physical sciences and how teachers are certified.
 - New York State has required standardized exams in science since the late 1800s.

First university degrees in S&E, by selected region, country, or economy: 2000–16

NCES, 2018

How do physics and chemistry coursetaking compare to other sciences and mathematics?

■ Economically Disadvantaged ■ URMS ■ All Students

Krakehl & Kelly. (2021, under review).

Context: Where is physics taught?

Locale	Total Number of Schools ¹	Number Schools Offering Physics (%)	Teachers of Physics (%)		
Urban	516	249 (48)	367 (26)		
Rural	282	257 (91)	291 (21)		
Suburban	386	366 (95)	729 (53)		
Total	1184	872 (74)	1387		

Richmond

Sheppard et al. (2020). Out-of-field teaching in chemistry and physics: An empirical census study. *Journal of Science Teacher Education*, *31*(7), 746-767. https://doi.org/10.1080/1046560X.2019.1702268

What Are the Primary Certifications of Physics Teachers?

Primary Certification of Physics Teachers	Number Certified	% of All Physics Teachers			
Physics	821	59			
Biology	180	13			
Chemistry	169	12			
Earth Science	91	7			
Mathematics	76	5			
Non-Science/Mathematics	43	3			

What are potential teacher and school-level variables that predict physics performance?

(F(7,439)=39.685, p<.001); adjusted $R^2 = 0.378$, a large effect

Variable	Standardized regression	Unstandardized regression	95% Confide	p-value		
	coefficient <i>b</i>	coefficient <i>B</i>	Lower	Upper		
Urban school locale	-0.301	-17.705	-24.280	-11.129	<.001	
Socioeconomic status (%FRL)	-0.229	-0.298	-0.434	-0.163	<.001	
Rural school locale	0.151	7.565	3.268	11.863	.001	
Professional age (years of teaching experience)	0.109	0.278	0.063	0.492	.011	

Krakehl, Kelly, Sheppard, & Palermo. (2020). Physics teacher isolation, contextual characteristics, and student performance. *Physical Review Physics Education Research*.

Adapted from Bourdieu, 1977; Archer et al., 2018; DeWitt et al., 2016

RESEARCH QUESTIONS

- 1. How does student performance in precollege science and mathematics vary by ethnicity and socioeconomic status?
- 2. How do demographic and science and mathematics course performance variables predict physics performance?
- 3. How might academic variables mediate physics performance for students traditionally underrepresented in STEM?

N=1237 high schools in New York State; *N*=811,000 students in grades 9-12

Multivariable Regression Model Predicting Physics Performance

Model with accounted for 51.7% of the variance in physics performance, F(11,651) = 65.353, p < 0.001, Cohen's d = 2.069

Variable	Standardized	Unstandardized	95% Confide	p-value	
	coefficient b	coefficient B	Lower	Upper	
% economically disadvantaged	-0.045	-0.042	-0.131	0.048	0.364
% URMS***	-0.318	-0.215	-0.276	-0.154	<0.001
Physics test-taking ratio	-0.027	-0.142	-0.524	0.239	0.464
Chemistry test-taking ratio	0.042	0.158	-0.176	0.493	0.353
Biology test-taking ratio	-0.020	-0.060	-0.249	0.130	0.535
Algebra II test-taking ratio	-0.028	-0.103	-0.401	0.195	0.498
Chemistry performance***	0.323	0.322	0.236	0.409	<0.001
Earth science performance	0.042	0.047	-0.044	0.138	0.313
Biology performance	-0.042	-0.055	-0.181	0.071	0.390
Geometry performance	0.036	0.037	-0.066	0.141	0.478
Algebra II performance*	0.105	0.133	0.014	0.252	0.028

Krakehl & Kelly. (2021).

Mediation Models Predicting Physics Performance

First Model*										
Testing Path	Independent Variable	Dependent Variable	Effect	Adj.R ²	df	F	β	В	SE(B)	95% CI
С	%URMS	Physics perf	Direct	0.408	662	456.472	-0.639	-0.432	0.020	-0.472, -0.392
а	%URMS	Chemistry perf	Mediated	0.361	662	375.244	-0.602	-0.408	0.021	-0.450, -0.367
b	Chemistry perf	Physics perf	Mediated	0.510	662	345.392	0.402	0.400	0.034	0.334, 0.467
с'	%URMS	Physics perf	Indirect	—	—	—	-0.397	-0.269	0.023	-0.314, -0.223
			Se	cond Moc	lel*					
С	%URMS	Physics perf	Direct	0.408	662	456.472	-0.639	-0.432	0.020	-0.472, -0.392
а	%URMS	Algebra II perf	Mediated	0.404	662	450.064	-0.636	-0.340	0.160	-0.372, -0.309
b	Algebra II perf	Physics TTR	Mediated	0.464	662	287.509	0.310	0.392	0.047	0.300, 0.483
c'	%URMS	Physics TTR	Indirect	_	_	_	-0.442	-0.299	0.025	-0.348, -0.250

*p<0.001; %URMS=schoolwide percentage of underrepresented minorities students; TTR=test-taking ratio; perf=performance (schoolwide passing percentage)

Krakehl & Kelly. (2020).

Conclusions

- State-level data sets provide an enormous amount of information on contextual factors that influence performance in the physical sciences.
- Physics performance is negatively predicted by urban school locale and socioeconomic status, but this effect is partially mediated by teaching experience.
 - Schools must work to retain experienced physics teachers, and universities must improve the preparation of preservice physics teachers.
- Physics performance is predicted by chemistry and algebra II performance.
 - Underrepresented students may perform better in physics if interventions are targeted in mathematics and chemistry.

References

- Kelly, A. M., & Sheppard, K. (2019). Access to elite urban science schools in the U.S.: Opportunity, disparate impact, and equal protection. *Teachers College Record*. Retrieved from <u>https://www.tcrecord.org/Content.asp?ContentID=22951</u>
- Krakehl, R., & Kelly, A. M. (2021, under review). Science and mathematics predictors of precollege physics equity, access, and performance.
- Krakehl, R., Kelly, A. M., Sheppard, K., & Palermo, M. (2020). Physics teacher isolation, contextual characteristics, and student achievement. *Physical Review Physics Education Research*, 16(2), 020117. <u>https://doi.org/10.1103/PhysRevPhysEducRes.16.020117</u>
- National Center for Education Statistics. (2018b). Percentage of public and private high school graduates taking selected mathematics and science courses in high school, by selected student and school characteristic: Selected years, 1990 through 2009. U.S. Department of Education. <u>https://nces.ed.gov/programs/digest/d18/tables/dt18_225.40.asp</u>
- No Child Left Behind Act of 2001, 20 U.S.C. § 6319 (2002).
- Padwa, L., Kelly, A. M., & Sheppard, K. (2019). Chemistry teacher isolation, contextual characteristics, and student performance. *Journal of Chemical Education*, 96(11), 2383-2392. <u>https://doi.org/10.1021/acs.jchemed.9b00392</u>
- Sheppard, K., Padwa, L., Kelly, A. M., & Krakehl. R. (2020). Out-of-field teaching in chemistry and physics: An empirical census study. *Journal of Science Teacher Education*, 31(7), 746-767. <u>https://doi.org/10.1080/1046560X.2019.1702268</u>
- White, S., & Tesfaye, C. L. (2014). High school physics courses & enrollments: Results from the 2012–2013 Nationwide Survey of High School Physics Teachers. AIP Statistical Research Center. <u>https://www.aip.org/statistics/reports/high-school-physics-courses-enrollments-0</u>