Midterm Review Short Answer Base your answers to questions 1 and 2 on the information below. The accepted values for the atomic mass and percent natural abundance of each naturally occurring isotope of silicon are given in the data table below. ## Naturally Occuring Isotopes of Silicon | Isotope | Atomic Mass | Percent Natural | | |---------|--------------------|--------------------------------|--| | | (atomic mass unit) | $oxed{\mathbf{Abundance}}(\%)$ | | | Si-28 | 27.98 | 92.22 | | | Si-29 | 28.98 | 4.69 | | | Si - 30 | 29.97 | 3.09 | | - 1. Show a correct numerical setup for calculating the atomic mass of Si. - 2. Determine the total number of neutrons in an atom of Si-29. - 3. Write an electron configuration for an atom of aluminum-27 in an excited state. - 4. Draw a Lewis electron-dot diagram for a sulfur atom in the ground state. - 5. Base your answer to the following question on the information and the bright-line spectra represented below. Many advertising signs depend on the production of light emissions from gas-filled glass tubes that are subjected to a high-voltage source. When light emissions are passed through a spectroscope, bright-line spectra are produced. | Gas A | | |--------------------|--| | Gas B | | | Gas C | | | Gas D | | | Unknown
mixture | | Explain the production of an emission spectrum in terms of the *energy states of an electron*. ## Midterm Review Short Answer Base your answers to questions 6 through 8 on the information below. A metal, *M*, was obtained from a compound in a rock sample. Experiments have determined that the element is a member of Group 2 on the Periodic Table of the Elements. - 6. Explain why the radius of a positive ion of element *M* is *smaller* than the radius of an atom of element *M*. - 7. Explain, in terms of electrons, why element *M* is a good conductor of electricity. - 8. What is the phase of element *M* at STP? Base your answers to questions 9 through 11 on the information below. Rust on an automobile door contains Fe₂O₃(s). The balanced equation representing one of the reactions between iron in the door of the automobile and oxygen in the atmosphere is given below. $$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$ - 9. Write the IUPAC name for Fe₂O₃. - 10. Determine the gram-formula mass of the product of this reaction. - 11. Identify the type of chemical reaction represented by this equation. - 12. Given the balanced equation: $$4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$$ What is the total number of moles of $O_2(g)$ that must react completely with 8.0 moles of $Al(s)$ in order to form $Al_2O_3(s)$? - 13. A student heats a 243 gram sample of BaCl₂ 2H₂O hydrated crystals? - a What was the percentage by mass of water in the hydrated crystals?[Show all work] - b If all the water was driven out of the crystal, what would be the expected weight of the BaCl₂ sample remaining?[Show all work] - 14. Explain, in terms of electronegativity, why a P–Cl bond in a molecule of PCl₅ is more polar than a P–S bond in a molecule of P₂S₅. ## Midterm Review Short Answer 15. Base your answer to the following question on the table below. Physical Properties of Four Gasses | | . • | | | | |----------------------------|----------|----------------------|---------------------|--------------------| | Name of Gas | hydrogen | hydrogen
chloride | hydrogen
bromide | hydrogen
iodide | | Molecular Structure | Н-Н | H-Cl | H-Br | H-I | | Boiling Point (K) at 1 Atm | 20. | 188 | 207 | 237 | | Density (g/L) at STP | 0.0899 | 1.64 | ? | 5.66 | Explain, in terms of intermolecular forces, why hydrogen has a *lower* boiling point than hydrogen bromide. 16. Base your answer to the following question on the information below. Each molecule listed below is formed by sharing electrons between atoms when the atoms within the molecule are bonded together. Molecule *A*: Cl₂ Molecule *B*: CCl₄ Molecule *C*: NH₃ Explain why NH₃ has stronger intermolecular forces of attraction than Cl₂. 17. Draw the electron-dot (Lewis) structure of calcium chloride.